Gradient Docs
Gradient HomeHelp DeskCommunitySign up free
1.0.0
1.0.0
  • About Paperspace Gradient
  • Get Started
    • Quick Start
    • Core Concepts
    • Install the Gradient CLI
    • Common Errors
  • Tutorials
    • Tutorials List
      • Getting Started with Notebooks
      • Train a Model with the Web UI
      • Train a Model with the CLI
      • Advanced: Distributed training sample project
      • Registering Models in Gradient
      • Using Gradient Deployments
      • Using Custom Containers
  • Notebooks
    • Overview
    • Using Notebooks
      • The Notebook interface
      • Notebook metrics
      • Share a Notebook
      • Fork a Notebook
      • Notebook Directories
      • Notebook Containers
        • Building a Custom Container
      • Notebook Workspace Include Files
      • Community (Public) Notebooks
    • ML Showcase
    • Run on Gradient (GitHub badge)
  • Projects
    • Overview
    • Managing Projects
    • GradientCI
      • GradientCI V1 (Deprecated)
  • Workflows
    • Overview
      • Getting Started with Workflows
      • Workflow Spec
      • Gradient Actions
  • Experiments
    • Overview
    • Using Experiments
      • Containers
      • Single-node & multi-node CLI options
      • Experiment options
      • Gradient Config File
      • Environment variables
      • Experiment datasets
      • Git Commit Tracking
      • Experiment metrics
        • System Metrics
        • Custom Metrics
      • Experiment Logs
      • Experiment Ports
      • GradientCI Experiments
      • Diff Viewer
      • Hyperparameter Tuning
    • Distributed Training
      • Distributed Machine Learning with Tensorflow
      • Distributed Machine Learning with MPI
        • Distributed Training using Horovod
        • Distributed Training Using ChainerMN
  • Jobs
    • Overview
    • Using Jobs
      • Stop a Job
      • Delete a Job
      • List Jobs
      • Job Logs
      • Job Metrics
        • System Metrics
        • Custom Metrics
      • Job Artifacts
      • Public Jobs
      • Building Docker Containers with Jobs
  • Models
    • Overview
    • Managing Models
      • Example: Prepare a TensorFlow Model for Deployments
      • Model Path, Parameters, & Metadata
    • Public Models
  • Deployments
    • Overview
    • Managing Deployments
      • Deployment Containers
        • Custom Deployment Containers
      • Deployment States
      • Deployment Logs
      • Deployment Metrics
      • A Deployed Model's API Endpoint
        • Gradient + TensorFlow Serving
      • Deployment Autoscaling
      • Optimize Models for Inference
  • Data
    • Types of Storage
      • Managing Data in Gradient
        • Managing Persistent Storage with VMs
    • Storage Providers
    • Versioned Datasets
    • Public Datasets Repository
  • TensorBoards
    • Overview
    • Using Tensorboards
      • TensorBoards getting started with Tensorflow
  • Metrics
    • Metrics Overview
    • View and Query Metrics
    • Push Metrics
  • Secrets
    • Overview
    • Using Secrets
  • Gradient SDK
    • Gradient SDK Overview
      • Projects Client
      • Experiments Client
      • Models Client
      • Deployments Client
      • Jobs Client
    • End to end tutorial
    • Full SDK Reference
  • Instances
    • Instance Types
      • Free Instances (Free Tier)
      • Instance Tiers
  • Gradient Cluster
    • Overview
    • Setup
      • Managed Private Clusters
      • Self-Hosted Clusters
        • Pre-installation steps
        • Gradient Installer CLI
        • Terraform
          • Pre-installation steps
          • Install on AWS
          • Install on bare metal / VMs
          • Install on NVIDIA DGX
        • Let's Encrypt DNS Providers
        • Updating your cluster
    • Usage
  • Tags
    • Overview
    • Using Tags
  • Machines (Paperspace CORE)
    • Overview
    • Using Machines
      • Start a Machine
      • Stop a Machine
      • Restart a Machine
      • Update a Machine
      • Destroy a Machine
      • List Machines
      • Show a Machine
      • Wait For a Machine
      • Check a Machine's utilization
      • Check availability
  • Paperspace Account
    • Overview
    • Public Profiles
    • Billing & Subscriptions
    • Hotkeys
    • Teams
      • Creating a Team
      • Upgrading to a Team Plan
  • Release Notes
    • Product release notes
    • CLI/SDK Release notes
Powered by GitBook
On this page
  1. Workflows

Overview

Automate from idea to production

PreviousGradientCI V1 (Deprecated)NextGetting Started with Workflows

Last updated 3 years ago

This section of the documentation was for the Worlflows (BETA). For the latest info on training in Gradient go to .

Workflows are the newest (and most powerful) way to create machine learning projects. Workflows let you use a style syntax to easily create powerful automation.

Workflows allow you to build complex, real-world machine learning projects. Note, this is an advanced topic so if you are still early in your ML journey, it might make more sense to start with first.

Key Terminology

  • Workflow:

    • a named or unnamed entity that belongs to a team and project

    • named workflows can be re-run with a default workflow spec, or be passed a new spec every time

    • jobs can define inputs, outputs, and their own environment variables

    • jobs can require other jobs via "needs" and collect/pass info between jobs

    • jobs can be implemented with an action via "use"

    • actions can receive parameters (e.g. args, image) within the job step via the "with" argument

    • e.g. container@v1 action = run a container, load inputs, and produce outputs

    • the most basic run requires a workflowId and clusterId - most will also include a workflowSpec and the inputs to be passed into the workflow

Workflows are based on the which is a container-native continuous delivery tool for Kubernetes.

: a JSON or YAML list of jobs that is converted into an Argo template and run on the Gradient distributed runtime engine.

: self-contained part of a workflow spec that is similar to an Argo step

: A self-contained, composable set of code building blocks that can perform specific actions within a machine learning project.

: the implementation of a workflow

the workflow run contains everything needed for the workflow to actually be executed; i.e. what (workflowId), where (clusterId), how (workflowSpec) with (, etc.)

Argo runtime engine
Workflow Spec
Action
Workflows
GitHub-action
notebooks
Job
Workflow Run
inputs