Gradient Docs
Gradient HomeHelp DeskCommunitySign up free
1.0.0
1.0.0
  • About Paperspace Gradient
  • Get Started
    • Quick Start
    • Core Concepts
    • Install the Gradient CLI
    • Common Errors
  • Tutorials
    • Tutorials List
      • Getting Started with Notebooks
      • Train a Model with the Web UI
      • Train a Model with the CLI
      • Advanced: Distributed training sample project
      • Registering Models in Gradient
      • Using Gradient Deployments
      • Using Custom Containers
  • Notebooks
    • Overview
    • Using Notebooks
      • The Notebook interface
      • Notebook metrics
      • Share a Notebook
      • Fork a Notebook
      • Notebook Directories
      • Notebook Containers
        • Building a Custom Container
      • Notebook Workspace Include Files
      • Community (Public) Notebooks
    • ML Showcase
    • Run on Gradient (GitHub badge)
  • Projects
    • Overview
    • Managing Projects
    • GradientCI
      • GradientCI V1 (Deprecated)
  • Workflows
    • Overview
      • Getting Started with Workflows
      • Workflow Spec
      • Gradient Actions
  • Experiments
    • Overview
    • Using Experiments
      • Containers
      • Single-node & multi-node CLI options
      • Experiment options
      • Gradient Config File
      • Environment variables
      • Experiment datasets
      • Git Commit Tracking
      • Experiment metrics
        • System Metrics
        • Custom Metrics
      • Experiment Logs
      • Experiment Ports
      • GradientCI Experiments
      • Diff Viewer
      • Hyperparameter Tuning
    • Distributed Training
      • Distributed Machine Learning with Tensorflow
      • Distributed Machine Learning with MPI
        • Distributed Training using Horovod
        • Distributed Training Using ChainerMN
  • Jobs
    • Overview
    • Using Jobs
      • Stop a Job
      • Delete a Job
      • List Jobs
      • Job Logs
      • Job Metrics
        • System Metrics
        • Custom Metrics
      • Job Artifacts
      • Public Jobs
      • Building Docker Containers with Jobs
  • Models
    • Overview
    • Managing Models
      • Example: Prepare a TensorFlow Model for Deployments
      • Model Path, Parameters, & Metadata
    • Public Models
  • Deployments
    • Overview
    • Managing Deployments
      • Deployment Containers
        • Custom Deployment Containers
      • Deployment States
      • Deployment Logs
      • Deployment Metrics
      • A Deployed Model's API Endpoint
        • Gradient + TensorFlow Serving
      • Deployment Autoscaling
      • Optimize Models for Inference
  • Data
    • Types of Storage
      • Managing Data in Gradient
        • Managing Persistent Storage with VMs
    • Storage Providers
    • Versioned Datasets
    • Public Datasets Repository
  • TensorBoards
    • Overview
    • Using Tensorboards
      • TensorBoards getting started with Tensorflow
  • Metrics
    • Metrics Overview
    • View and Query Metrics
    • Push Metrics
  • Secrets
    • Overview
    • Using Secrets
  • Gradient SDK
    • Gradient SDK Overview
      • Projects Client
      • Experiments Client
      • Models Client
      • Deployments Client
      • Jobs Client
    • End to end tutorial
    • Full SDK Reference
  • Instances
    • Instance Types
      • Free Instances (Free Tier)
      • Instance Tiers
  • Gradient Cluster
    • Overview
    • Setup
      • Managed Private Clusters
      • Self-Hosted Clusters
        • Pre-installation steps
        • Gradient Installer CLI
        • Terraform
          • Pre-installation steps
          • Install on AWS
          • Install on bare metal / VMs
          • Install on NVIDIA DGX
        • Let's Encrypt DNS Providers
        • Updating your cluster
    • Usage
  • Tags
    • Overview
    • Using Tags
  • Machines (Paperspace CORE)
    • Overview
    • Using Machines
      • Start a Machine
      • Stop a Machine
      • Restart a Machine
      • Update a Machine
      • Destroy a Machine
      • List Machines
      • Show a Machine
      • Wait For a Machine
      • Check a Machine's utilization
      • Check availability
  • Paperspace Account
    • Overview
    • Public Profiles
    • Billing & Subscriptions
    • Hotkeys
    • Teams
      • Creating a Team
      • Upgrading to a Team Plan
  • Release Notes
    • Product release notes
    • CLI/SDK Release notes
Powered by GitBook
On this page
  • Finding your Cluster ID
  • Using Gradient private clusters via the Gradient CLI
  • Using Gradient clusters via the Web UI
  1. Gradient Cluster

Usage

PreviousUpdating your clusterNextOverview

Last updated 4 years ago

Finding your Cluster ID

Your clusters are available under the Private Clusters in the Paperspace console. Here you can find information about your cluster, including your cluster ID – you will need to specify this ID in order to designate your private cluster as the place to run experiments, notebooks, etc.

Using Gradient private clusters via the Gradient CLI

gradient <command> ... --clusterId <your-cluster-ID>

--clusterId string Cluster ID for this processing site, e.g. "clxxxxxxx".

A complete example of utilizing Gradient features on a cluster might look like this:

gradient experiments run singlenode --name experiment1 \
--projectId prgydf45k \
--clusterId cl53waq2x \
--machineType c5.xlarge \
--container tensorflow/tensorflow:1.13.1-py3 \
--experimentEnv "{\"EPOCHS_EVAL\":\"5\",\"TRAIN_EPOCHS\":\"10\",\"MAX_STEPS\":\"1000\",\"EVAL_SECS\":\"10\"}" \
--workspaceUrl https://github.com/Paperspace/mnist-sample.git \
--command "pip install -r requirements.txt && python mnist.py"

In order to run workloads on your Gradient cluster, you must specify the clusterId parameter on most Gradient primary commands, including:

  • experiments

  • deployments

  • jobs

  • models

  • notebooks

  • tensorboards

If you don't supply the clusterId parameter, then your command will default to run on Paperspace instances, which are not part of your private cluster environment.

Using Gradient clusters via the Web UI

When creating a notebook, an experiment, or a model deployment, select your private cluster in the console, then select an instance type that's available in your cluster.

You will need to provide your API key to authenticate your requests. Learn how to obtain and set your API key .

To avoid having to re-enter the Cluster ID, and if you want the configuration to be reusable and checked into source control, another option is using the . This file can contain the clusterID parameter in addition to many other common settings.

Gradient Config File
page
here