Gradient Docs
Gradient HomeHelp DeskCommunitySign up free
1.0.0
1.0.0
  • About Paperspace Gradient
  • Get Started
    • Quick Start
    • Core Concepts
    • Install the Gradient CLI
    • Common Errors
  • Tutorials
    • Tutorials List
      • Getting Started with Notebooks
      • Train a Model with the Web UI
      • Train a Model with the CLI
      • Advanced: Distributed training sample project
      • Registering Models in Gradient
      • Using Gradient Deployments
      • Using Custom Containers
  • Notebooks
    • Overview
    • Using Notebooks
      • The Notebook interface
      • Notebook metrics
      • Share a Notebook
      • Fork a Notebook
      • Notebook Directories
      • Notebook Containers
        • Building a Custom Container
      • Notebook Workspace Include Files
      • Community (Public) Notebooks
    • ML Showcase
    • Run on Gradient (GitHub badge)
  • Projects
    • Overview
    • Managing Projects
    • GradientCI
      • GradientCI V1 (Deprecated)
  • Workflows
    • Overview
      • Getting Started with Workflows
      • Workflow Spec
      • Gradient Actions
  • Experiments
    • Overview
    • Using Experiments
      • Containers
      • Single-node & multi-node CLI options
      • Experiment options
      • Gradient Config File
      • Environment variables
      • Experiment datasets
      • Git Commit Tracking
      • Experiment metrics
        • System Metrics
        • Custom Metrics
      • Experiment Logs
      • Experiment Ports
      • GradientCI Experiments
      • Diff Viewer
      • Hyperparameter Tuning
    • Distributed Training
      • Distributed Machine Learning with Tensorflow
      • Distributed Machine Learning with MPI
        • Distributed Training using Horovod
        • Distributed Training Using ChainerMN
  • Jobs
    • Overview
    • Using Jobs
      • Stop a Job
      • Delete a Job
      • List Jobs
      • Job Logs
      • Job Metrics
        • System Metrics
        • Custom Metrics
      • Job Artifacts
      • Public Jobs
      • Building Docker Containers with Jobs
  • Models
    • Overview
    • Managing Models
      • Example: Prepare a TensorFlow Model for Deployments
      • Model Path, Parameters, & Metadata
    • Public Models
  • Deployments
    • Overview
    • Managing Deployments
      • Deployment Containers
        • Custom Deployment Containers
      • Deployment States
      • Deployment Logs
      • Deployment Metrics
      • A Deployed Model's API Endpoint
        • Gradient + TensorFlow Serving
      • Deployment Autoscaling
      • Optimize Models for Inference
  • Data
    • Types of Storage
      • Managing Data in Gradient
        • Managing Persistent Storage with VMs
    • Storage Providers
    • Versioned Datasets
    • Public Datasets Repository
  • TensorBoards
    • Overview
    • Using Tensorboards
      • TensorBoards getting started with Tensorflow
  • Metrics
    • Metrics Overview
    • View and Query Metrics
    • Push Metrics
  • Secrets
    • Overview
    • Using Secrets
  • Gradient SDK
    • Gradient SDK Overview
      • Projects Client
      • Experiments Client
      • Models Client
      • Deployments Client
      • Jobs Client
    • End to end tutorial
    • Full SDK Reference
  • Instances
    • Instance Types
      • Free Instances (Free Tier)
      • Instance Tiers
  • Gradient Cluster
    • Overview
    • Setup
      • Managed Private Clusters
      • Self-Hosted Clusters
        • Pre-installation steps
        • Gradient Installer CLI
        • Terraform
          • Pre-installation steps
          • Install on AWS
          • Install on bare metal / VMs
          • Install on NVIDIA DGX
        • Let's Encrypt DNS Providers
        • Updating your cluster
    • Usage
  • Tags
    • Overview
    • Using Tags
  • Machines (Paperspace CORE)
    • Overview
    • Using Machines
      • Start a Machine
      • Stop a Machine
      • Restart a Machine
      • Update a Machine
      • Destroy a Machine
      • List Machines
      • Show a Machine
      • Wait For a Machine
      • Check a Machine's utilization
      • Check availability
  • Paperspace Account
    • Overview
    • Public Profiles
    • Billing & Subscriptions
    • Hotkeys
    • Teams
      • Creating a Team
      • Upgrading to a Team Plan
  • Release Notes
    • Product release notes
    • CLI/SDK Release notes
Powered by GitBook
On this page
  • Base Containers
  • Popular Containers
  • Other Containers
  • Custom Containers
  1. Notebooks
  2. Using Notebooks

Notebook Containers

PreviousNotebook DirectoriesNextBuilding a Custom Container

Last updated 4 years ago

Check out the for a list of projects you can fork into your account.

Base Containers

When you launch a Notebook, it runs inside a container preloaded with the notebook files and dependencies. The following is a list of containers that Paperspace maintains:

Popular Containers

Name

Description

Container Tag

URL

Fast.ai

paperspace/fastai:2.0-CUDA9.2-fastbook-v0.1.0

TensorFlow 2.4.1

TensorFlow 2 with GPU support.

tensorflow/tensorflow:2.4.1-gpu-jupyter

NVIDIA RAPIDS

NVIDIA's library to execute end-to-end data science and analytics pipelines.

nvcr.io/nvidia/rapidsai/rapidsai:0.18-cuda11.0-base-centos7

PyTorch

Latest PyTorch release (1.8) with GPU support.

nvcr.io/nvidia/pytorch:21.02-py3

Hugging Face Transformers

A state-of-the-art NLP library from Hugging Face

paperspace/transformers-gpu:0.4.0

Other Containers

Name

Description

Container Tag

URL

TensorFlow (1.14 GPU)

Official docker images for deep learning framework TensorFlow

paperspace/dl-containers:tensorflow1140-py36-cu100-cdnn7-jupyter

Analytics Vidhya CV

Analytics Vidhya conatiner

jalfaizy/cv_docker:latest

JupyterLab Data Science Stack

Jupyter Notebook Data Science Stack

jupyter/datascience-notebook

JupyterLab Data R Stack

Jupyter Notebook R Stack

jupyter/r-notebook

Custom Containers

Custom containers feature lets you pull your own image from a container registry such as Docker Hub. This article will help you prepare a custom Docker container to use with Gradient, show you how to bring that Container into Gradient, and create a notebook with your custom container. We recommend using Docker to get the container image from your system to Gradient. You must run jupyter on port 8888 and allow connections from ip address 0.0.0.0. To support our notebook ide you must also include the following flags: --no-browser --NotebookApp.trust_xheaders=True --NotebookApp.disable_check_xsrf=False --NotebookApp.allow_remote_access=True --NotebookApp.allow_origin='*' if your command is jupyter notebook, if your command is jupyter lab use these instead --no-browser --LabApp.trust_xheaders=True --LabApp.disable_check_xsrf=False --LabApp.allow_remote_access=True --LabApp.allow_origin='*'.

Required field:

  • Container Name = Path and tags of image eg ufoym/deepo:all-jupyter-py36

Optional fields:

  • Registry Username = your private container registry username, can be left blank for public images

  • Registry Password = your private container registry password, can be left blank for public images

  • Command = must be Jupyter compatible, defaults to jupyter notebook --allow-root --ip=0.0.0.0 --no-browser --NotebookApp.trust_xheaders=True --NotebookApp.disable_check_xsrf=False --NotebookApp.allow_remote_access=True --NotebookApp.allow_origin='*' if left blank

  • Container user = optional user, defaults to 'root' if left blank

Paperspace's Fast.ai template is built for getting up and running with the enormously popular .

****

ML Showcase
Fast.ai online MOOC
GitHub
DockerHub
NVIDIA
DockerHub
DockerHub
DockerHub
GitHub
DockerHub
DockerHub