Notebook Containers
Last updated
Last updated
Check out the ML Showcase for a list of projects you can fork into your account.
When you launch a Notebook, it runs inside a container preloaded with the notebook files and dependencies. The following is a list of containers that Paperspace maintains:
Custom containers feature lets you pull your own image from a container registry such as Docker Hub. This article will help you prepare a custom Docker container to use with Gradient, show you how to bring that Container into Gradient, and create a notebook with your custom container. We recommend using Docker to get the container image from your system to Gradient. You must run jupyter
on port 8888
and allow connections from ip address 0.0.0.0
. To support our notebook ide you must also include the following flags: --no-browser --NotebookApp.trust_xheaders=True --NotebookApp.disable_check_xsrf=False --NotebookApp.allow_remote_access=True --NotebookApp.allow_origin='*'
if your command is jupyter notebook
, if your command is jupyter lab
use these instead --no-browser --LabApp.trust_xheaders=True --LabApp.disable_check_xsrf=False --LabApp.allow_remote_access=True --LabApp.allow_origin='*'
.
Container Name = Path and tags of image eg ufoym/deepo:all-jupyter-py36
Registry Username = your private container registry username, can be left blank for public images
Registry Password = your private container registry password, can be left blank for public images
Command = must be Jupyter compatible, defaults to jupyter notebook --allow-root --ip=0.0.0.0 --no-browser --NotebookApp.trust_xheaders=True --NotebookApp.disable_check_xsrf=False --NotebookApp.allow_remote_access=True --NotebookApp.allow_origin='*'
if left blank
Container user = optional user, defaults to 'root' if left blank
Name
Description
Container Tag
URL
Fast.ai
Paperspace's Fast.ai template is built for getting up and running with the enormously popular Fast.ai online MOOC.
paperspace/fastai:2.0-CUDA9.2-fastbook-v0.1.0
TensorFlow 2.4.1
TensorFlow 2 with GPU support.
tensorflow/tensorflow:2.4.1-gpu-jupyter
****DockerHub
NVIDIA RAPIDS
NVIDIA's library to execute end-to-end data science and analytics pipelines.
nvcr.io/nvidia/rapidsai/rapidsai:0.18-cuda11.0-base-centos7
PyTorch
Latest PyTorch release (1.8) with GPU support.
nvcr.io/nvidia/pytorch:21.02-py3
Hugging Face Transformers
A state-of-the-art NLP library from Hugging Face
paperspace/transformers-gpu:0.4.0
Name
Description
Container Tag
URL
TensorFlow (1.14 GPU)
Official docker images for deep learning framework TensorFlow
paperspace/dl-containers:tensorflow1140-py36-cu100-cdnn7-jupyter
Analytics Vidhya CV
Analytics Vidhya conatiner
jalfaizy/cv_docker:latest
JupyterLab Data Science Stack
Jupyter Notebook Data Science Stack
jupyter/datascience-notebook
JupyterLab Data R Stack
Jupyter Notebook R Stack
jupyter/r-notebook